Modern Computational Accelerator Physics

James Amundson Alexandru Macridin Panagiotis Spentzouris

Fermilab

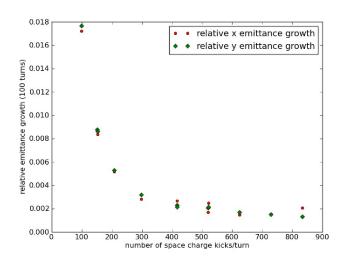
USPAS January 2015

Calculating Particle Tunes and Synergia Results

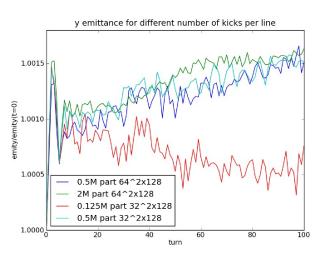
Calculating Particle Tunes

- The simplest definition of tune is the number of full oscillations a particle experiences during the course of a single turn.
- Given a particle track, the Fast Fourier Transform makes it seemingly trivial to find the dominant frequency, and hence the tune.
 - numpy.fft.fft is the FFT function, which will return a complex vector
 - abs(vec) will return a vector of the absolute values of the complex elements of vec
 - numpy.argmax(vec) will return the index of the largest value in vec
 - The tune is just the position of the peak divided by the number of turns in the sample.

Calculating Particle Tunes (2)


- Why did I say seemingly trivial?
 - There is usually noise in the lowest (few) frequency(ies).
 - Too many samples may lead to noise in other channels that will dominate the actual tune peak.
 - The NyquistShannon sampling theorem tells you that
 - you should only look in the lowest half of the FFT result.
 - you need at least twice as many samples per turn as the tune if you want to see the integer part.
 - you need at least two samples per turn if you are only interested in the fractional tune.

Applications: Fermilab Main Injector (Project X)


Eric Stern, JFA

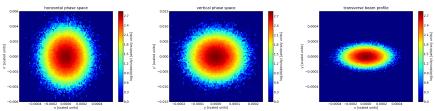
- Significant effort spent understanding convergence of space charge calculation
 - grid size
 - number of macroparticles
 - number of kicks per turn
- Includes generation of nonlinearly-matched initial beam
 - very full RF bucket means very nonlinear longitudinal dynamics
 - using CHEF's arbitrary-order normal form calculation

MI kicks per turn study

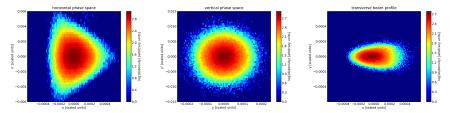
MI grid and macroparticle study

Compromise between running time and accuracy: 0.5M macroparticles, 32x32x128 grid

Space charge and nonlinear optics studies for Mu2e¹

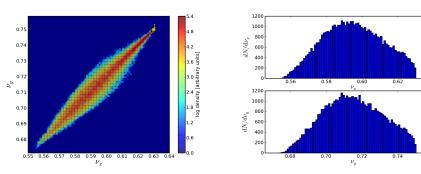

Motivation

- Beam to be extracted from Fermilab Debuncher using (nonlinear) resonant extraction
- \bullet Accumulator/Debuncher required to handle 10^5 times more particles than current operating conditions
 - Space charge is the biggest worry.


¹J. Amundson, A. Macridin, L. Michelotti, C. S. Park, P. Spentzouris, E. Stern

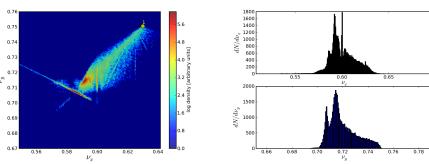
Sextupoles without space charge

Beam with linear magnets only


Beam with (nonlinear) sextupoles

Nonlinear magnets distort the phase-space structure of the beam.

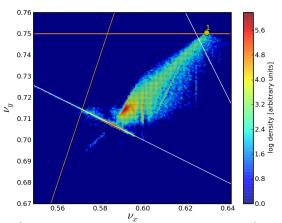
Effects of space charge without sextupoles


- In a fully linear linear problem, all particles have the same ("bare") tune.
- Space charge creates a "tune footprint"

- Two-dimensional densities (colors) are plotted on a logarithmic scale
- One-dimensional densities are plotted on a linear scale
- Bin sizes are one unit of tune resolution

Combining sextupoles and space charge

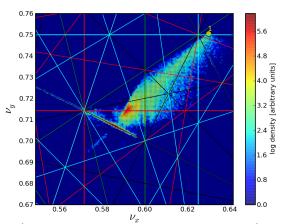
Highly non-trivial interaction between the two effects...



...leading to unacceptably large losses. Results are understood in terms of resonance theory. Resonances occur when

$$m + I\nu_X + q\nu_y = \nu_X$$

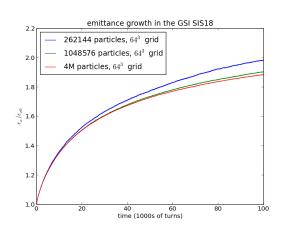
for integer m, l, q.


Resonance lines in the tune footprint

white 3^{rd} -order orange 4^{th} -order green 5^{th} -order

black 6th-order red 7th-order cyan 8th-order

Resonance lines in the tune footprint


white 3rd-order orange 4th-order green 5th-order

black 6th-order red 7th-order cyan 8th-order

Applications: GSI SIS18 Benchmarking Exercise

- 71 steps/turn
- 7,100,000 steps
- 4,194,304 particles
- 29,779,558,400,000 particle-steps

1,238,158,540,800,000 calls to drift

